ALTC2010 and HEA workshops: Is Higher Education’s use of technology making it more ‘efficiently unsustainable’?

Following a few months of research and writing about energy, climate change and future scenarios for Higher Education, I’m pleased to write that Richard Hall and I have recently had two workshop proposals accepted based on the idea of ‘Resilient Education’.  There are minor differences between the two workshops, based on the anticipated participants, but the outline below, accepted for the ALTC2010 conference, is broadly representative of both. We’re hoping that we’ll not only raise awareness about the possible impacts of Peak Oil and the recently introduced Climate Change Act on the form and provision of Higher Education, but also learn from participants about ways that the sector might become more resilient to the the legislative, economic, societal and technological impacts that we face.

Is Higher Education’s use of technology making it more ‘efficiently unsustainable’?

When we speak of ‘sustainability’, what is it that we wish to sustain? In a future of climate change, energy depletion and low or no economic growth, what will Higher Education look like? Will our institutions and the current form of educational provision survive? This workshop will encourage participants to imagine and work towards a more ‘resilient education’.

This session will provide an opportunity for both non-academic and academic staff to discuss Higher Education, its institutions, curricula and pedagogies, in the light of two external impacting factors: Climate Change and fossil fuel depletion. HEIs are significant energy consumers. Increasingly both pedagogy and the curriculum are aided and delivered through the use of ICT. University floor space is increasing to accommodate growing numbers of students. In a near-future scenario of energy scarcity, which impacts both the reliability and availability of affordable energy, as well as the need to radically shift to the use of renewable energy and extreme efficiencies, we ask: “How resilient are our educational institutions?”

The workshop facilitators (Joss Winn, Lincoln, Dr. Richard Hall, De Montfort) will explain a near-future scenario in which the impacts of climate change and energy depletion on Higher Education are apparent. After a Q & A session, clarifying the scenario for participants, small groups will be challenged to ‘Think the Unthinkable’ and develop responses relating to the business continuity of their institutions and the continued provision of quality research, teaching and learning in an environment where absolute emissions are reduced by 80%. Participants will be encouraged to consider the most radical solutions including massive reform of curricula and the disestablishment of the national institutional model.

“It is not an exaggeration to claim that the future of human prosperity depends on how successfully we tackle the two central energy challenges facing us today: securing the supply of reliable and affordable energy; and effecting a rapid transformation to a low-carbon, efficient and environmentally benign system of energy supply. What is needed is nothing short of an energy revolution.” (IEA World Energy Outlook 2008 http://www.worldenergyoutlook.org/)

Climate change and the language of war

A few posts I read this morning seem to complement each other by showing how inadequate the current political and economic climate (pardon the pun) is for meeting the targets set out in the UK’s Climate Change Act 2008.

It’s not unusual to find reports calling for the need to tackle climate change with the kind of national attention and effort that was mobilised around World War II. A good example is a recent report from the The Royal Academy of Engineering, Generating the Future. A report on UK energy systems fit for 2050. I’ll have more to say about the report in another post, but they join the chorus of experts referring to the Act as “a huge challenge”, arguing that nothing less than our entire manufacturing base needs to shift focus and be “on a war footing”, if we are to meet the targets set out in the Act.

Last night, Ed Milliband was challenged during the Guardian’s Climate Debate over Roger Pielke Jnr. paper which argues that to meet the Climate Change Act’s targets for decarbonisation, the equivalent of 30 nuclear power stations would have to be built before 2015. Pielke’s position is that the Climate Change Act was always doomed to fail and that Milliband or whoever succeeds him will have to face up to it sooner or later.

So given the “huge challenge” (or delusion if you agree with Pielke Jnr.), what would it mean to be “on a war footing” in order to address the targets set out in the Act?

In a post yesterday, Stuart Staniford (one of my favourite energy/environment blogger analysts), notes that in 1943, the UK was spending 55% of GDP on the war. His source, the Cambridge Economic History of Great Britain, states that UK expenditure on the war went from 7% of GDP in 1938, to 53% in 1941, to 55% in 1943. So, in economic terms, that is what being “on a war footing” means. Half of national productivity is mobilised towards a single goal.

However, again in yesterday’s news we find that the UK’s annual deficit is the highest since records began in 1946, or as Edmund Conway in The Telegraph puts it this morning, we’re already experiencing a “war-sized” annual public deficit (overdraft) of £163.4bn (or 11.5% of GDP). Perhaps we should take some comfort in the Guardian’s Data Blog which shows that public debt (the accumulation of deficits) currently stands at 63.6% of GDP, far from the 250% of 1946.

This would suggest that if we are to shift our entire manufacturing base towards decarbonisation, as The Royal Academy of Engineering thinks we should, then Ann Pettiford’s argument for mobilising (I guess that includes educating/training) a “‘carbon army’ of ‘green-collar’ jobs”, through additional borrowing would seem to fit quite nicely into this apparently necessary vision of a ‘war on carbon’ (my phrase). For people working in education, it might be a useful exercise to consider what tertiary education might look like if half of national productivity was directed towards meeting the Climate Change Act, a law that each of us in the UK is bound too, after all.

The problem I have with all of this talk of war and climate change, aside from the hot air and inaction, is along the lines of what George Monbiot, in his book, Heat, has to say on the matter. That is, the enemy is no other than ourselves.

Most environmentalists – and I include myself in this – are hypocrites … I would like to believe that the changes I suggest could be achieved by appealing to people to restrain themselves. But though some environmentalists, undismayed by the failure of the past forty years of campaigning, refuse to see it, self-enforced abstinence alone is a waste of time . . . I have sought to demonstrate that the necessary reduction in carbon emissions is – if difficult – technically and economically possible. I have not demonstrated that it is politically possible. There is a reason for this. It is not up to me to do so. It is up to you . . . The campaign against climate change is an odd one. Unlike almost all the public protests which have preceded it, it is a campaign not for abundance but for austerity. It is a campaign not for more freedom but for less. Strangest of all, it is a campaign not just against other people, but also against ourselves.

I would add though that the enemy is not simply ‘ourselves’ – you, me, us – but capital’s laws of motion that have been turning since the late seventeenth century. We might find some comfort in reading that there is nothing natural about these laws of motion – there are alternatives – yet in another post I read this morning, it looks like the enemy has already won.

JISC Greening ICT Keynote Presentation

Here are the slides I used for JISC’s Greening ICT Programme Meeting. There are 25 slides with lots of notes and references from slide 26 onwards.

Revisiting ‘Thinking the unthinkable’

In October, I wrote a post which gave an overview of a (failed) bid to JISC.

“What will happen to the provision of a technology dependent education when energy consumption is restricted by recurring interruptions in supply and significant spikes in costs?” This project aims to address this question by re-framing ‘Sustainable ICT’ within the context of an imminent crisis in energy supply. As we increasingly turn to ICT to enhance, support and deliver education and research, the prospect of an energy crisis within the next ten years becomes crucially important to our sector, its partners and stakeholders. The project will use JISC’s Scenario Planning tools to address this crisis and examine the wider energy context, which fuels the UK’s industrialised and globalising model of Higher Education.

I have added the feedback I received as a postscript to the original post. Needless to say I was disappointed that it did not receive funding at that time, but very encouraged by the positive response I received from the evaluation panel.

Since submitting the bid, I have continued to pursue this area of research and wanted to reflect on the last four months of intensively reading around the subject of energy, climate change and, to a lesser extent, the resilience of HEIs. I have written about some of this in other posts, but think that a summary update would be useful for me to gather my thinking and perhaps be of interest to you, too. I should say upfront, that today, as I write, I’m not especially optimistic about the ability for the tertiary education sector to continue in its current form beyond the end of this decade (mainly due to increasing economic pressures) and hope that I offer enough reasons below to motivate other people to join Richard Hall and I, in pursuing this research further.

Peak Oil (or an oil ‘supply crunch’)

As I was writing the original research bid, The UK Energy Research Centre published their Global Oil Depletion Report, a massive survey of recent literature on the subject of Peak Oil. They concluded:

On the basis of current evidence we suggest that a peak of conventional oil production before 2030 appears likely and there is a significant risk of a peak before 2020.

As I’ve noted before, there is reason to suggest that oil production has already peaked, since supply has effectively plateaued  since 2005, despite the annual price of oil steadily increasing in the midst of significant price volatility.

Since the UKERC report, there have been other notable reports which forecast a peak in oil production by 2020. For example, yesterday the Peak Oil Task Force, a group of six UK companies, including Virgin, Scottish and Southern Energy and Stagecoach, published a report which warns of the “urgent, clear and present danger” of an ‘oil crunch’ by 2015:

The next five years will see us face another crunch – the oil crunch. This time, we do have the chance to prepare. The challenge is to use that time well. As we reach maximum oil extraction rates, the era of cheap oil is behind us. We must plan for a world in which oil prices are likely to be both higher and more volatile and where oil price shocks have the potential to destabilise economic, political and social activity. Virtually every sector of our economy is still dependent on oil.

This follows several other recent reports and warnings. For example, a Chatham House report forecasts a 2013 peak, the NGO, Global Witness, warns of an imminent supply crunch; Petrobras, Brazil’s oil company, a 2012 oil crunch; the CEO of Total SA, forecasts a peak by 2015Shell’s CEO likewise forecasts an end to easily accessible oil by 2015Chevron are vague on the date (2012?), but issued [PDF] a clear warning in 2005; the former VC of  Saudi Aramco, the world’s largest producer of oil, has said that oil production has peaked and is currently on a plateau. The International Energy Agency (IEA), representing OECD countries, has warned of an oil crunch from 2011, with production peaking by the end of the decade.

The conventional economic theory of demand destruction caused by the rising price of oil has had very little effect on the amount of oil consumed and conversely, price rises and therefore opportunity for investment over the long-term and incentives to produce more to sell in the short-term, have not resulted in a rise in oil production. Between 2002-5, “for every dollar increase in oil prices, three year cumulative global crude oil production increased at 167 mb per dollar.” However, between 2006-8… “for every dollar increase in oil prices, three year cumulative global crude oil production fell at 15 mb per dollar, again relative to the 2005 rate.” ((Comment on Oil Drum)) Similarly, the ex-VC of Saudi Aramco has said:

The evidence is that in spite of the increases – very large increases – in oil prices over the last four years, we haven’t been able to match that with increasing capacity. So, essentially, we are on a plateau.

Energy Security

In the original bid to JISC, I framed the problems of Peak Oil and Climate Change as potentially serious impacts on the operation of HEIs and therefore the provision of tertiary education in the UK. Energy security is a broad term that covers the supply and distribution of the different fuels that we need to fuel a growing economy. Global economic growth (GDP) is closely coupled to the global consumption of oil, and while there are indications that the demand for oil by OECD countries has started to decline, global demand is still expected to rise because of the demand by developing countries.

So we have a situation where the global demand for oil will outstrip the available supply of oil, therefore impacting on economic growth. On today’s Financial Times ‘Energy Source‘ blog, Geologist, Colin Campbell was quoted from 2006, saying:

I think we are facing an oil price shock, 100 or 200 dollars a barrel, an economic recession that cuts demand, and I will not be at all surprised if a fall in demand would make the price collapse again. So we might be back to 20 or 30 dollars a barrel next year perhaps. And so you have a price shock, a recession, a recovery, hits again the falling capacity limit, another price shock. And so I think that in the next few years, we have a sequence of vicious circles and gradually the reality of the situation will filtered through. We are on for a very volatile few years with enormous economic consequences.

The FT reporter thinks this view is “on the money” and I am inclined to agree, too.

Peak Oil is not the only energy security problem that we face over the next decade. The year 2016 is commonly given as the point where our national infrastructure, in it’s current form, can no longer supply the energy we demand.

Planned closures of ageing nuclear plant and the removal, by the end of 2015, of a significant amount of coal and oil-fired power stations under European environmental legislation is likely to lead to a large fall in the electricity capacity margin. ((Project Discovery – Energy Market Scenarios, p.5))

Ofgem’s recent Project Discovery project produced four market scenarios for the UK’s energy future. Their worse case scenario, as I’ve touched on before, is a ‘dash for energy’ scenario ((Project Discovery – Energy Market Scenarios, p.16)), where “the recession proves short-lived. Demand bounces back strongly and then increases over time, although investment levels take some time to become re-established following the hiatus caused by the credit crisis.” The costs of this to consumers would be a 60% increase in energy bills by 2020. ((I’ve noted elsewhere that Ernst & Young have calculated a possible 400% increase in consumer energy bills by 2020.))

However, in December, after consultations with energy companies and academics, the Chief Executive of Ofgem thought that this was “too optimistic”. Conversely, earlier this month, Ofgem issued a warning that bills could rise by 20% over the next decade, presumably because they do not now expect a ‘dash for energy’ scenario, but rather an economic outlook of slow growth.

Ofgem conclude that we have a narrow window until 2013 to implement policy to address supply security from 2016:

Although our scenarios do not indicate concerns over supply security until beyond the middle of the current decade, the timescales required to secure finance, mobilise supply chains and deliver the infrastructure needed suggests that the period around 2012 and 2013 could be important for investment decisions critical to future secure and sustainable energy supplies. Hence, there is a window of opportunity between now and then to implement any policy measures that may be necessary to make sure that investment takes place in a timely fashion. ((Project Discovery – Options for delivering secure and sustainable energy supplies, p.5))

Whichever way I am able to understand it, the picture of energy security for the UK over the next decade looks uncertain and any response, costly. Dieter Helm, Prof. of Energy Policy at Oxford, thinks we’re in a mess and calls for “a more imaginative approach to infrastructure… The Victorians did it: the current generation needs to repeat it.” ((The Challenge of Infrastructure Investment in Britain, p.39))

The rebound effect of (technological) efficiencies

One of the measures to improve the security of our energy supply is to improve our efficiency of energy use. This effectively allows us to do the same (or more), with less energy than before. The subject of energy efficiency is also closely related to our carbon reduction targets. The 2008 EU directive on Climate Change sees energy efficiencies as “one of the key ways in which CO2 emission savings can be realised.” (p. 8) The target is a reduction of 20% by 2020.

However, there is a problem when claiming absolute targets for energy efficiency, which has been studied by the UK Energy Research Centre in a 2007 review of over 500 studies in this area. The report is called, An Assessment of the evidence for economy-wide energy savings from improved energy efficiency, otherwise known as The Rebound Effect Report.

As the report notes, there have been claims in the past that technological efficiencies result in absolute and predictable decreases in energy use, just as there have been claims that such efficiencies result in more energy being used (in the latter case, this is referred to as ‘backfire’). The basic point is that while technological efficiencies in the use of energy are real, the overall result is that only part of the actual efficiency is realised in society. This is because while we save energy through efficiencies, we spend part of those savings on other activities that use up energy.

An example of a rebound effect would be the driver who replaces a car with a fuel-efficient model, only to take advantage of its cheaper running costs to drive further and more often. Or a family that insulates their loft and puts the money saved on their heating bill towards an overseas holiday.

This was first identified as the Jevons Paradox, which I have written about before. The usefulness of the UKERC report is that it demonstrates the complexity of the issue, but also that it usefully summarises the individual and social consequences of efficiencies. Efficiencies can be divided into those that have a direct rebound effect and those that have an indirect, or economy-wide, rebound effect.

An example of a direct rebound effect quoted above is where a family drive more because they’ve bought a more fuel efficient car. The report concludes that in particular circumstances up to 30% of the intended energy ‘saved’ through efficiency might be ‘spent’ in this way, particularly in areas such as transport and heating/cooling.

An example of an indirect rebound effect quoted above is where a family insulates their loft and then uses the savings in heating costs towards a holiday. The report is hesitant to draw conclusions in this area, but indicates that up to 50% (perhaps more) of the intended energy ‘saved’ in particular circumstances through efficiency might be ‘spent’ in this way. Some studies suggest much higher numbers which, they say, should be taken with caution.

The UKERC conclude that the alarming claims of ‘backfire’, where energy efficiency measures result in an overall increase in energy used, cannot be verified but should still be taken seriously. There is more evidence of this occurring when technologies are pervasive (i.e. the steam engine or electric motor).

The conclusions of the report are now of great interest to me and have confirmed the direction my research was beginning to go: that is, the relationship between energy and economic growth. I mentioned this in my original ‘Thinking the unthinkable’ post, in terms of how economic growth, the use of energy and the production of emissions are all coupled. The UKERC report puts it like this:

In developed countries, energy use as conventionally measured has grown more slowly than the economy as a whole. From this, it is generally concluded that technical change has improved the efficiency with which energy is used and thereby helped to ‘decouple’ energy consumption from economic growth. However once different energy sources are weighted by their relative ‘quality’ or economic productivity, the coupling between energy consumption and economic growth appears far stronger. Taken together, the evidence reviewed in this report suggests that: a) the scope for substituting other inputs for energy is relatively limited; b) much technical change has historically increased energy intensity; c) energy may play a more important role in economic growth than is conventionally assumed; and d) economy-wide rebound effects may be larger than is conventionally assumed.

Claims of a decoupling of energy consumption and emissions from economic growth virtually always refer to a relative decoupling, rather than an absolute decoupling.

It’s vital to distinguish between ‘relative’ and ‘absolute’ decoupling. Relative decoupling refers to a situation where resource impacts decline relative to the GDP. Impacts may still rise, but they do so more slowly than the GDP. The situation in which resource impacts decline in absolute terms is called ‘absolute decoupling’. Needless to say, this latter situation is essential if economic activity is to remain within ecological limits.

Evidence for declining resource intensities (relative decoupling) is relatively easy to identify. The energy required to produce a unit of economic output declined by a third in the last thirty years, for instance. Global carbon intensity fell from around one kilo per dollar of economic activity to just under 770 grams per dollar.

Evidence for overall reductions in resource throughput (absolute decoupling) is much harder to find. The improvements in energy (and carbon) intensity noted above were offset by increases in the scale of economic activity over the same period. Global carbon emissions from energy use have increased by 40% since only 1990 (the Kyoto base year). ((Prosperity without growth? The transition to a sustainable economy, p. 8))

Despite efficiencies, energy use goes up

Despite efficiencies, energy use per capita goes up

Despite efficiencies, emissions go up

Meeting our carbon targets

While the ‘rebound effect’ may have some implications for our energy security in terms of how efficiency measures may or may not safeguard against a scenario of oil depletion and overall supply disruptions,  there are very clear implications for our carbon reduction targets. One of the issues, perhaps the biggest issue, is that of population increases, a subject that is often recognised in reports, but skirted over because of the seemingly hopeless task and political sensitivity of addressing it. Nevertheless, it needs to be recognised that population increases do contribute to overall energy use and emissions and need to be accounted for in calculations that inform Climate Change policy.

Richard Hall has recently begin to address this, referring to Ehrlich-Holdren’s sustainability equation

I = P.A.T

That is, the impact of human activities (I) is determined by the overall population (P), the level of affluence (A) and the level of technology (T). Quoting Tim Jackson, Richard writes:

However, a key problem is the dynamic of efficiency vs scale. Jackson notes (p. 3) that “Technology is an efficiency factor in the equation. Population and affluence are scaling factors. Even as the efficiency of technology improves, affluence and population scale up the impacts. And the overall result depends on improving technological efficiency fast enough to outrun the scale effects of affluence and population.” So these factors are not independent and “appear to be in a self-reinforcing positive feedback between affluence and technology, potentially – and I emphasise potentially – geared in the direction of rising impact”

A recent paper I have found helpful in terms of thinking about the UK’s Climate Change Act (2008) concludes that the Act is certain to fail, showing how the target of an 80% reduction in emissions by 2050 (and 34% by 2022) has no historical precedent. What I found useful, regardless of whether the targets are practicably achievable, are the author’s observations on population growth and economic growth (GDP).

In summary, Pielke shows that the UK’s population is predicted to grow by 0.7% per year to 2031, which would mean that the population will be around 67 million people. Extending this to 2050, we would have a population of about 82 million. He warns the reader that population growth forecasts are “notoriously uncertain, so caution should be used when using them, as actual future populations could be higher or lower.” (p. 2) He then considers economic activity and observes that the UK economy averaged 2.5% GDP growth (inflation adjusted) between 1990-2007. Combining the 0.7% population increase with a more modest 2% GDP growth rate, implies a per capita growth rate of 1.3% per year. Finally, Pielke factors in technological change and notes that according to the US Energy Information Agency, “from 2000 to 2006 UK energy efficiency increased by about 2% per year, while the carbon intensity of the energy supply was largely unchanged.” (p. 2)

Because the effects of technological change (including changes in the economy toward services and away from energy intensive industry) just about balanced the overall growth of the economy for the past decade, the UK has seen little growth in its overall carbon dioxide emissions (although the UK National Audit Office recently observed that the lack of growth in emissions is also due to accounting, as some economic activities, like air travel, are not included in official emissions numbers.

Following Dieter Helm, I’ve noted before that this method of accounting creates an illusion ((UK’s official CO2 figures an illusion – study. Source: Too Good to be True? The UK’s Climate Change Record [PDF])) around our official emissions figures, transforming a reported 15% reduction into a 19% increase in emissions since 1990.

It seems to me that Pielke’s observations complement Tim Jackon’s reference to the I = P.A.T equation as well as the conclusions of the UKERC’s Rebound Effect report. That is, technological efficiency, although vitally important, does not, as we might expect, lead to an overall reduction in emissions or energy consumption. It merely helps balance the impacts of population growth and consumption led economic growth. Of course, if we also take into account our emissions and energy use that we outsource to industrialising countries such as China, the balance is lost in favour of rising energy use and emissions.

What is clear to me is that technology is being used as an excuse to avoid the greater issues of a broken and destructive (suicidal?) political economy and the consequences of an aspirational and growing population. Tim Jackson puts this nicely:

The IPAT equation appears to offer us broadly three ways of achieving overall reductions in energy demand (for example). One, reduce the population – not a popular choice. Two, reduce the level of affluence (again not high on political priorities – although an interesting avenue to explore at various levels as I shall suggest in a minute). And three, improve technology: specifically to increase the energy efficiency of income generation, to reduce the energy intensity of the economy.

Given the unpopularity and political intractability of routes one and two, it’s perhaps not surprising to find the mainstream response is to adopt route three as the preferred approach. Indeed an examination of the history of international policy from Brundtland onwards reveals quite clearly how route 3 allowed the world to steer an uneasy path between the demands of the North for population control in the South and the demands of the South for reduced affluence in the North. Option 3 emerges as an apparently politically neutral way through a tricky impasse. ((Rebound launch: keynote presentation))

Our technological subservience to economic growth

Technology emerges as an apparently politically neutral way through a tricky impasse.

This single line encapsulates a great deal of what I have been trying to understand through writing these posts over the last few months and it links to a question Richard raises in his recent post:  Is this all subservient to a view of economic growth? The answer has to be yes. The production and consumption/use of technology is not politically neutral. As we have seen, all the time we pursue economic growth, technology serves the objectives of capitalism. This is evident in the long history of capitalism, just as it is evident in Higher Education today.

In short, society is faced with a profound dilemma. To resist growth is to risk economic and social collapse. To pursue it is to endanger the ecosystems on which we depend for long-term survival.

For the most part, this dilemma goes unrecognised in mainstream policy or in public debate. When reality begins to impinge on the collective consciousness, the best suggestion to hand is that we can somehow ‘decouple’ growth from its material impacts.

Never mind that decoupling isn’t happening. Never mind that no such economy has ever existed. Never mind that all our institutions and incentive structures continually point in the opposite direction. The dilemma, once recognised, looms so dangerously over our future that we are desperate to believe in miracles. Technology will save us.

Capitalism is good at technology. So let’s just keep the show on the road and hope for the best. ((Prosperity without growth? The transition to a sustainable economy, p. 102))

Despite the genuine and overwhelming challenges of energy depletion and climate change, technological development as a means to solve these problems, is merely a sideshow. Technological innovation and the resulting improvements in energy efficiency and lower emissions are vital responses, but do little more than offset the exponential problems of an increasing population and economic growth. I am hesitant to call population growth a problem all the while the relatively few rich consumers produce the majority of emissions ((George Monbiot, The Population Myth)). Economic growth and and our notion of what constitutes ‘progress’ seem to me, to warrant much of our attention when considering these issues.

I think that’s where I need to go next. Only by understanding our role within capitalism can we attempt to address the problems I’ve discussed. What better place to do this than a Higher Education institution, a place where the impacts of these issues are evident everywhere and answers to these problems can be collectively sought. I recently applied to the HEA for funding in an attempt to begin to put this into practice and will continue to think along these lines.

The bottom line of energy, efficiencies and the economy

Some visual note-taking from documents I’ve been reading. No big surprises but useful reminders of some fundamental observations. In summary, they show that:

  • global energy production is increasing
  • global energy consumption is increasing
  • global energy use per capita is increasing
  • increasing energy efficiency does not lead to an overall reduction in energy use
  • correspondingly, global emissions are rising
  • economic growth is tightly coupled to energy use
  • taking current climate pledges into account, we’re currently on course for a 4c increase in temperatures by 2100

Click on the images to go to the source. Some are direct links to PDF files.

World energy supply

World energy consumption

Energy use per capita

World C02 emissions

Economic growth

 

The rebound effect of efficiency

Decline of net energy

Climate Scoreboard

‘Green ICT’ : More efficiently unsustainable?

My slides for the Digital 2020 GreenICT mini-conference:

There are quite extensive notes which can be read from slide 21 onwards.

UPDATE

In retrospect, I think these slides are pretty incoherent. I tried to make up for this by adding notes and references and figured that when I gave the presentation, I’d smooth all the joins. Alas, I didn’t really get time to do that, either.

During the presentation, the slides which seemed to have the most impact were 2 & 3, which introduce the Jevons Paradox of ‘efficiencies’ and then the actual increase in global energy use. I should also add that despite efficiencies and taking population increases into account, per capita energy use is still increasing globally. You can see how individual countries compare here: http://j.mp/51IIId

The slide (16) where I ask ‘Why be Green?’ and say ‘Resilience’ is meant to refer to Green being about dematerialisation, energy efficiency, and a zero or planned negative growth economy. Each of these ‘green factors’ could contribute to reduce the impacts of energy depletion and climate change and therefore contribute to resilience. I don’t think they would mitigate the impacts, but individuals and organisations that understand the principles of ‘being green’, would be better placed and more resilient against those impacts.

Energy, the economy and resilience

What impact might the increasing cost of energy have on Higher Education? My interest is not simply about the impact on institutional spending, but rather the deeper and broader socio-economic effects that an energy crisis might have on the provision of Higher Education. To the extent that Universities are businesses, I am interested in ‘business continuity’, but equally I am interested in whether the current energy intensive model of HE will remain viable and whether an energy crisis might act as a catalyst to changes in the nature of Higher Education within society.

This forms part of an on-going series of blog posts/essays, which are being collected under the tag #resilienteducation (RSS feed). My thinking on these issues is by no means complete or even coherent at times but through sketching out these ideas and hopefully receiving feedback, we can all offer useful observations on and possible solutions for the future of Higher Education. You will see that Richard Hall has recently begun to address this too, questioning the relevancy of curricula, and how building resilience to the related impacts of an energy crisis and climate change might inform learning design and pedagogy.

I appreciate that a discussion about energy fundamentals is not part of the usual discourse around educational provision, but my proposal is that it should be and will be, just as there is already a discourse around the increasing role of educational technology, which is, from one point of view, merely leveraging affordable and abundant energy for the purposes of research, teaching and learning.

In fact, the discourse around energy has already begun under the guise of Climate Change and Sustainability. When we speak of sustainability with regards to Climate Change, we are referring to a transition from a society built on fossil-fuel energy to one that is not. If adhered to, this compelling transition will be more profound than anything we have experienced in our lifetimes and is likely to last our entire professional lives, too.

As the crucial issue of Climate Change begins to dominate all aspects of society, so I expect an interest in the fundamentals of energy policy, security, production and consumption to surface in discussions about the nature of our institutional provision of education, just as an interest in carbon emissions and sustainability is surfacing now.

The facts

During the period of 2007-8, GDP in the UK hovered somewhere between 2-3%:

GDP Growth. Source: Office for National Statistics
GDP Growth. Source: Office for National Statistics

Looking at the Consumer Price Index (CPI) between 2007-8, inflation rose from about 2% to 5%:

Inflation 2007-9. Source: Office for National Statistics
Inflation 2007-9. Source: Office for National Statistics

Individual earnings increased, on average, just under 4% each year during 2007-8:

Average Earnings 2007-9. Source: Office for National Statistics
Average Earnings Pay Growth 2007-9. Source: Office for National Statistics

Average household income in 2007-8 was about £30K:

Household Income 2007-8. Source: Office for National Statistics
Household Income 2007-8. Source: Office for National Statistics

Now, moving on to energy, consumer ‘dual fuel’ bills have more than doubled since 2004.

Dual fuel customer bill 2004-9. Source Ofgem
Dual fuel customer bill 2004-9. Source Ofgem

In 2006 (the latest figures I can find), household fuels made up, on average, 3.5% of household income. Though bear in mind that this is an average. For lower income households, it rose to 6.6%.

Household Fuel Expenditure 2006. Source: DECC (2008 report)
Household Fuel Expenditure 2006. Source: DECC (2008 report)

With the average household final income at just under £30K and the average annual household duel fuel bill at over £1200, the current percentage expenditure on household energy is more like 4%.

The scenario

In October this year, Ofgem forecast that UK domestic energy bills could rise by up to 60% over the next ten years in a scenario where the economy recovered and there is a competitive ‘dash for energy’ between countries for energy resources. Specifically, they see a difficult period around 2016 due to the closure of domestic facilities and an increased reliance on imported fuels. ((For a good overview of energy security in the EU, see the recent Briefing Paper from Chatham House: Europe’s Energy Security After Copenhagen: Time for a Retrofit?)) However, last week, at a House of Commons Select Committee, Alistair Buchanan, the chief executive of Ofgem, said that following more recent discussions with energy suppliers and academics, the 60% figure is now seen as too optimistic. He didn’t offer a revised figure from 60%, but we might consider research by Ernst & Young (commissioned by uSwitch), that warns of up to a 400% increase in the costs of domestic fuel by 2020. That is, average annual domestic energy bills could increase from £1243/year to £4733/year. ((Household fuel bills to hit almost £5K in ten years time (PDF) )) This doesn’t mean very much until we compare it to increases in average household income which, looking at the individual income, GDP and inflation charts above, we might optimistically suggest will climb back to about 3-4% each year. The forecast isn’t quite as good as that in the medium term though, with GDP predicted to grow by 1.1% in 2010, 2% in 2011, 2.3% in 2012 and 2.7% in 2013. Inflation (CPI) is likewise forecast at 1.9%, 1.6%, 2% and 2.3% each year, respectively. Anyway, let’s be a bit optimistic and say that the average final household income will rise from about £29K to around £37K in 2020 (about +2.5%/year – my Union has just agreed to a 0.5% pay increase this year). The percentage of household income spent on the £4733 energy bill would rise from 4% to nearly 13% in 2020. That’s a significant chunk of household income that for many people would force ‘efficiencies’ in energy use, result in cuts in other household spending and contribute to further fuel poverty. In terms of the Jevons Paradox, it may be understood as a method of controlling the energy consumption of the average household.

Fuel Poverty 1996-07. Source: DECC
Fuel Poverty 1996-07. Source: DECC

The bigger picture

It’s useful to look at the bigger energy picture presented in my last post and consider the effect that the price of oil had on energy prices, inflation and GDP during the last few years. The prices of gas and electricity correlate closely to the price of oil:

The correlation of energy prices
The correlation of energy prices

Of course, not only does the price of electricity rise with oil, but the price of fuels for transportation rise, too, and when transportation costs rise, everything else, including food and consumer goods, rise. ((For 2008 average fuel prices, see The AA’s Fuel Prices 2008)) Look back to the inflation chart above and see how inflation peaked above 5% in September 2008 not long after the price of oil peaked at $147/barrel in July 2008. The effect is, unsurprisingly, that as living gets more expensive and results in sustained debts we cannot manage, we are forced to curtail consumption and GDP slows.  I mentioned in my last post that there is a belief that oil price spikes lead to recessions. ((See James Hamilton’s paper, ‘Causes and Consequences of the Oil Shock of 2007-08’. It’s worth starting from a discussion on The Oil Drum, where you can download the paper. For a more succinct summary, see the FT article here and a rebuke here. Still, even the rebuke recognises the impact oil can have on an economy: “It is through second-round effects that inflation can rise. For an oil importer, a rise in the price of oil means that the country is poorer as a whole. No matter what policy action they take, their terms of trade have deteriorated.”))

Look again at the chart below, which I used in my previous post and shows the price of oil over the last few years with a projection to 2012. The forecast of oil at around $175/barrel within the next two years, based on what we’ve just seen above, suggests the possibility of a sustained recession as economic growth is limited by the availability of affordable energy. Given the recent volatility of the oil market, we should be cautious of forecasting prices, but can, with more confidence, predict supply and demand, which prices are linked to. With oil production at a plateau, “chronic under-investment” in the oil industry (despite record income) and the additional price of carbon added to energy consumption, the retail price of energy to consumers is unlikely to go against the trend shown in this graph.  Other sources confirm the likelihood of an ‘oil crunch’ before 2015. For example, see the interview with the IEA’s Chief Economist and a report from Chatham House, which warns of a crunch by 2013 and the possibility of prices topping $200 per barrel.

World oil supply, demand and price to 2012
World oil supply, demand and price to 2012

Finally, there is a whole other local issue of declining revenues from North Sea Oil, which was presented as a grave problem to the All Party Parliamentary Group on Oil and Gas, this week. If this post interests you, I highly recommend spending 30 minutes reading this paper which accompanied the presentation and discusses these issues in much greater depth and breadth. The paper concludes:

If we look forward, taking into account the biophysical restrictions, a major change in the nature of our economy is certain – if only because the reality of our situation dictates that it can’t stay the same. That is the political issue that British society must reconcile itself to. For the last two decades we have been living a lifestyle that has been sustained by the wealth and power created by indigenous energy resources. That cannot continue, and the process of moving from an economy that has no limits to one that must operate within more tightly constrained limits is going to be a difficult re-adjustment for many: For the political class it means redefining what it is society represents, and what its aspirations should be; for the business community it means redefining what the term “business as usual” really means; and for the public it means reassessing their own material aspirations, and perhaps a return to a far less energetic lifestyle that in terms of energy and material consumption is likely to be similar to the levels which existed in the 1950s or 1960s.

Perhaps at a later date, we might look at Higher Education in the 1950s and 60s in some detail…?

Universities are large consumers of energy

If oil and therefore energy prices are to continue to rise as both the chart above and the uSwitch research warns, what might be the cost to Higher Education? A 2008 paper estimated that UK Higher Education Institutions spent around £300m on energy in 2006, an increase of 0.5% since 2001 and representing 1.6% of total income. ((Ian Ward, Anthony Ogbonna, Hasim Altan, Sector review of UK higher education energy consumption, Energy Policy, Volume 36, Issue 8, August 2008, Pages 2939-2949, ISSN 0301-4215, DOI: 10.1016/j.enpol.2008.03.031.))

This review reveals that the energy consumption levels in UK HEIs increased by about 2.7% over the 6-year period between 2001 and 2006. The building energy-related CO2 emissions are estimated to have increased by approximately 4.3% between 2005 and 2006 alone. These trends run contrary to the national plans for emissions reductions in all sectors and are therefore a cause for action.

The Sustainable ICT project estimated that around £60m of the £300m (1/5th) was to power ICT. ((Sustainable ICT in Further and Higher Education: SusteIT Final Report, p. 97)) Since 2006, energy bills have risen by about 25% so we might expect HEIs annual electricity costs to currently be around £375m, with ICT use around £75m. The increase in the number of students in Higher Education has not resulted in a corresponding increase in energy use; closer correlations can be found between floor space and energy use and, interestingly, between research activity and energy consumption. The more research intensive universities use relatively more energy. ((Ian Ward, Anthony Ogbonna, Hasim Altan, Sector review of UK higher education energy consumption, Energy Policy, Volume 36, Issue 8, August 2008, Pages 2939-2949, ISSN 0301-4215, DOI: 10.1016/j.enpol.2008.03.031. Another interesting figure that the paper observes is that the ‘downstream’ energy use for the sector, which includes suppliers, business and student travel represents 1.5 times the direct energy consumption of the sector.)) But enough about energy prices. Annual income of HEIs increased by 10% to £23.4bn between 2007-8 and total expenditure likewise increased by 9%. ((HESA: Sources of income for UK HEIs 2006/07 and 2007/08)) How would an energy shock of +400% , increasing sector-wide energy costs from £375m to £1.5bn over the next ten years, be managed when income and spending appear to be so tightly coupled? On a more local level, my institution’s gas, electricity and oil bill is forecast to be £1.63m in 2009/10, up 6% on the last year. What would be the impact on us of an annual bill of £6.5m in 2020? (In 2007, our university had a budget surplus of £2.6m). ((University of Lincoln Financial Statements)) What areas of income are likely to accommodate an increased spend of up to 400% in ten years? Efficiencies in energy use can help, but even with planned cuts in consumption of around 5% next year, the annual cost of electricity, gas and oil at this university is still expected to rise by 0.8% under current energy prices.

Sustainability or resilience?

Resilience is the capacity of a system to absorb disturbance and reorganise while undergoing change, so as to still retain essentially the same function, structure, identity and feedbacks. ((Although it requires more elaboration and consideration in terms of educational provision, this is the common definition of ‘resilience’ used by the Transition Town movement adopted from Brian Walker and David Salt, (2006) Resilience Thinking: Sustaining Ecosystems and People in a Changing World. See Rob Hopkins (2008) The Transition Handbook. From oil dependency to local resilience. For an academic critique of the Transition Town’s use of ‘resilience’, see Alex Haxeltine and Gill Seyfang, ‘Transitions for the People: Theory and Practice of ‘Transition’ and ‘Resilience’ in the UK’s Transition Movement’. A paper presented at the 1st European Conference on Sustainability Transitions, July 2009))

What actions can HEIs take to be resilient and therefore remain relevant as dramatic social changes occur in our use of energy and therefore material consumption and output?

Resilience, it seems to me, is a pre-requisite for sustainability if you accept the tangible and coupled threats of energy security and climate change enforcing long-term zero or negative growth. If oil production has peaked just prior to the worst economic crisis in living memory and faced with the need to reduce carbon emissions by at least 80% in the next forty years, should we not first develop a more resilient model that we wish to sustain?

In terms of energy use, can efficiencies lead to sustainability? At what point does ‘efficiency’ actually mean conservation and rationing? At what point do we change our habits, our practices, our institutions instead of telling ourselves that we are being efficient, as we do today? How can we teach a relevant curricula with less money (due to funding cuts and higher costs) and less energy?

To what extent is Higher Education coupled to economic growth? Universities contribute 2.3% of UK GDP but to what extent are universities dependent on economic growth? How would a university operate under a stable but zero growth economy? To what extent is educational participation dependent on economic growth?

Sorry, lots of questions but fewer answers right now.

The Sustainable Development Commission, “the Government’s independent watchdog on sustainable development”, published a report earlier this year called Prosperity without Growth, the transition to a sustainable economy. The publication (recently developed into a book), examines what ‘prosperity’ means and discussed education alongside other ‘basic entitlements’ such as health and employment.   In particular, the author argues that these basic entitlements need not intrinsically be coupled with growth. He argues that growth itself is unsustainable and that high standards of health, education, life expectancy, etc. are not coupled with higher levels of income everywhere.

Interestingly, there is no hard and fast rule here on the relationship between income growth and improved flourishing. The poorest countries certainly suffer extraordinary deprivations in life expectancy, infant mortality and educational participation. But as incomes grow beyond about $15,000 per capita the returns to growth diminish substantially. Some countries achieve remarkable levels of flourishing with only a fraction of the income available to richer nations. [p. 43]

Participation in education vs. income per capita. Source: Prosperity without Growth
Participation in education vs. income per capita. Source: Prosperity without Growth

Chapter four of the publication includes a useful discussion on economic growth, technological efficiency and resilience concluding:

…the answer to the question of whether growth is functional for stability is this: in a growth-based economy, growth is functional for stability. The capitalist model has no easy route to a steady-state position. Its natural dynamics push it towards one of two states: expansion or collapse.

Put in its simplest form the ‘dilemma of growth’ can now be stated in terms of two propositions:

  • Growth is unsustainable – at least in its current form. Burgeoning resource consumption and rising environmental costs are compounding profound disparities in social wellbeing
  • ‘De-growth’ is unstable – at least under present conditions. Declining consumer demand leads to rising unemployment, falling competitiveness and a spiral of recession.

This dilemma looks at first like an impossibility theorem for a lasting prosperity. But it cannot be avoided and has to be taken seriously. The failure to do so is the single biggest threat to sustainability that we face.

Decoupling participation in Higher Education from energy use and emissions

We can see from the chart above that Cuban citizens enjoy roughly the same level of educational participation as the UK, yet their GDP per capita is just a quarter of that of the UK. Participation in this case, is “the combined primary, secondary, and tertiary gross enrolment ratio.” ((What is the Human Development Index?)) Cuba’s energy use per capita is also just a quarter of the UK’s consumption, suggesting that while GDP and energy consumption are closely coupled, GDP and educational participation need not be.

Oil demand and GDP. Source: The Oil Drum
Oil demand and GDP. Source: The Oil Drum

In terms of UK HEI’s resilience, how can opportunities for participation in Higher Education remain widespread in a low energy, zero growth scenario? The Sector review of UK higher education energy consumption showed that energy consumption is not tightly coupled with student numbers, although close correlations between floor space, the number of research students and FTE staff can be seen. Does that mean that the smaller, less research intensive universities are better placed than the larger, research intensive institutions in an energy crisis scenario? Is a model of fewer universities with a higher staff-to-student ratio the answer? What other attributes, other than floor space and research activity could be used to measure resilience against the economic impact of an energy crisis?

Again, lots of questions, but fewer answers right now. Have you got any?

Oil and the story of energy

In my previous post, I discussed energy efficiency and our carbon emissions. I tried to highlight how despite our apparent efficiencies, our absolute emissions have risen 19% since 1990. One of the reasons for this is known by Economists as the Jevons Paradox.

The Jevons Paradox (sometimes called the Jevons effect) is the proposition that technological progress that increases the efficiency with which a resource is used, tends to increase (rather than decrease) the rate of consumption of that resource… In addition to reducing the amount needed for a given use, improved efficiency lowers the relative cost of using a resource – which increases demand and speeds economic growth, further increasing demand. Overall resource use increases or decreases depending on which effect predominates… The Jevons Paradox only applies to technological improvements that increase fuel efficiency.

You will see from the Wikipedia article, that one method of controlling consumption of the resource is a tax to try to ensure that the price and therefore the demand for the resource, remains roughly the same. As I understand it, this is what the CRC Energy Efficiency Scheme is attempting to do. It will force universities to become more energy efficient in order to lower our emissions. Rather than then use those efficiencies to purchase more emissions producing resources, which is what we normally do, the fines and reputational incentive will force us to keep making year on year savings of carbon emissions.

As the CRC Energy Efficiency Scheme highlights, the most effective way to reduce our emissions is to focus on our consumption of energy. Around 75% of worldwide C02 emissions caused by humans are due to the use of fossil fuels to make energy. ((See the IPCC 2007 Summary for Policy Makers, p.5 for a break down. Note that fossil fuels only account for 56% of total greenhouse gas emissions.)) Last week, the International Energy Agency published their annual World Energy Outlook, regarded as the most authoritative assessment of worldwide energy production and consumption. ((The authority of the IEA has been somewhat undermined by a whistleblower but nevertheless, it’s the most complete assessment available to us.)) The graph below shows their ‘reference scenario’, which is a snapshot of the current picture and, if we make no changes at all to our use of energy, where we are heading.

WEO Primary Energy Demand Reference Scenario

As you can see, coal, oil and gas make up the majority of the world’s sources of energy and without making changes, we are heading for an increase of 40% by 2030. Projected to 2050 and beyond, this results in around 1000ppm CO2 equivalent, more than double the safe target figure. ((How the Energy Sector Can Deliver on a Climate Agreement in Copenhagen, IEA, 2009, p.10))

The IEA’s ‘450 Scenario’, which refers to the 450ppm of C02 equivalent emissions discussed previously, is a different picture.

WEO Primary Energy Demand

In the 450 Scenario, energy related emissions peak in 2020, together with global demand for fossil fuels and our use of renewables climbs steadily. Forecasts like this are notably about what we should do, not what we will do. We might also consider what we can do.

David McKay, Cambridge Prof. of Physics and Chief Scientific Advisor to DECC, has written Without Hot Air, a well regarded book that can be downloaded for free. In it, he examines in detail, the supply and demand for energy in the UK.  His conclusions offer five energy plans for Britain, All plans take into account energy efficiencies through the use of more efficient technologies. The five plans that he offers are technically achievable but as you read through them, I think you’ll find that they severely test your belief that they can be achieved. They all assume that our use of energy remains largely the same, driven by the objective of economic growth. MacKay recognises that the plans might sound absurd and invites readers to come up with something better, “but make sure it adds up!” Finally, he notes a plan might be to decrease power consumption per capita or reduce our population, neither of which are any easier to achieve. A further complication to all of this is that the IEA 450ppm scenario offers a global picture whereas MacKay’s book concentrates on a UK scenario. If the five plans he provides look absurd for the UK to achieve, it is reasonable to assume that a scenario where every other country addresses their energy infrastructure with similar plans, might be even more absurd.

Peak Oil

In an earlier post, I introduced Peak Oil and this is what I want to discuss for the rest of this post. It’s a simple idea to understand but has profound implications for the next few decades. In fact, the implications are much more difficult to grasp than the idea itself and, if correct, will certainly impact on the way Higher Education institutions operate and the nature of public education.

Previously, I introduced the idea of ‘resilient eduction’ and asked how it might be developed in the context of Higher Education.

…a pedagogy and curriculum that both encourages and fosters the radical change that is necessary as well as ensuring that the present depth, breadth and quality of education is sustainable in a future where there may be less abundance and freedom than we have become accustomed to.

Richard Hall at De Montfort University has recently responded to this in a long and thoughtful post. As part of our ‘blog conversation’, in which Warren Pearce and Nick Fraser are also contributing, I’d like to offer an overview of the story of oil and, in later posts, point to how the current provision of Higher Education can be seen as a product of an abundance of oil. On the flip side, in a future where oil becomes more scarce, our provision of education might have to change radically. An overall response to this future might collectively be to increase our ‘resilience’ to the impact of peak oil. ((I acknowledge, as Richard has discussed at length in his post, that we are both borrowing from and aligning with the Transition movement’s use of the term ‘resilience’ in the face of peak oil and climate change. In effect, we are contributing to the Transition movement’s work by specifically examining Higher Education in a period of transition.)) Here’s why:

Hubberts Curve. Source: The Oil Drum
Hubbert's Curve. Source: The Oil Drum

This is Hubbert’s Curve. It  was proposed by Hubbert in the 1950s and, with a reliable amount of accuracy, has so far predicted the global rate of oil production. The dotted line is the actual historic rate of production until 2004. What it tells us is that we produced (due to demand), more oil than the model predicted during the 1960s and 70s. The energy crisis of the late 1970s led to an adjustment (the dip) and since then the world has been following Hubbert’s curve very closely. The very end of the dotted line shows that production in 2004 exceeded Hubbert’s proposal and might lead us to think that with more recent data, we’re repeating the 1970s all over again. This is not the case as you’ll see a few charts down as production has plateaued since 2005. Before we look at that, it’s worth noting that the rate of oil discovery has been in decline since the 1960s. Discoveries have been made since 1964, only they have been smaller amounts of oil and do not add up to what was available to us fifty years ago.

Global Oil Discovery. Source: The Oil Drum
Global Oil Discovery. Source: The Oil Drum

Hubbert’s original work, while employed as a Geophysicist with Shell, predicted the peak of oil production for the USA and this provides a useful historical example that can be extrapolated globally.

US Peak Oil. Source: The Oil Drum
US Peak Oil. Source: The Oil Drum

As you can see, oil production in the 48 states of the USA peaked in 1970. As this became apparent, oil production in Alaska was increased to make up for the shortfall but capacity also began to decline in Alaska in the mid-1980s. When the production rate of oil began to decline in the USA, the production rate of oil in the UK and Mexico was increased but this also went into decline. The UK has been a net importer of oil since 2004.

North Sea and Mexico Peak Oil
North Sea and Mexico Peak Oil. Source: The Oil Drum

The map below offers a global overview of countries where oil production has peaked (around two-thirds).

Which countries have peaked? Source: ODAC
Which countries have peaked? Source: ODAC

Critics of peak oil think that there is plenty of oil left, not only to be discovered but already discovered and not yet fully exploited. Their argument often points to the availability of oil in the tar sands of Canada and other so-called Megaprojects. There are many problems with this view, not least that the production techniques emit more carbon emissions than conventional oil production, but here it is worth noting that they too are subject to decline and make up a relatively small amount of the global requirement for oil.

What can the mega projects contribute? Source:
What can the 'mega projects' contribute? Source: The Oil Drum

The chart below, shows the November 2009 forecast. Click on the image to read what it means in detail, but the point to make here is that global oil production has plateaued since 2005, leading many analysts to believe that Hubbert’s Curve and other similar forecasts, were correct. In effect, we are at the top of the peak.

Novembers forecast. Source: The Oil Drum
November's forecast. Source: The Oil Drum

Moving from production rates to pricing, it is useful to note that as the production of oil has plateaued since 2005, the price of oil continued to rise until June 2008. The recession and consequent drop in demand for oil sent the price of oil down to $34/barrel in February and has rebounded to around $80/barrel in the last month.

Production vs. Price. Source: ODAC
Production vs. Price. Source: ODAC

World Supply, Demand and Price to 2012. Source: The Oil Drum
World Supply, Demand and Price to 2012. Source: The Oil Drum

What is especially interesting to me is that because oil is a primary energy source used in the extraction and transportation processes of other energy sources, the price of electricity, largely derived from coal and gas, follows the price of oil very closely. Therefore, we might reasonably assume that as the production of oil declines over the next 20 years, the price of electricity will rise.

The correlation of energy prices. Source: ODAC
The correlation of energy prices. Source: ODAC
Oil demand and GDP. Source: The Oil Drum
Oil demand and GDP. Source: The Oil Drum

It’s interesting to see that recessions follow oil price spikes quite reliably, as happened in 2008. One observation that has been made is that the USA doesn’t seem to be able to sustain economic growth when oil prices are consistently above $80 or so. James Hamilton, at the University of California, argues that oil prices tipped the US economy into recession.

Oil prices and US recessions. Source: The Oil Drum
Oil prices and US recessions. Source: The Oil Drum

Where will we get our energy from?

Like all fossil fuels, oil is a finite resource and there is no disagreement about the supply of oil eventually running out. The point however, is not about oil running out but rather when it becomes uneconomic as a source of energy. The IEA would agree with this as do the UK Energy Research Council, who last month, published the Global Depletion Report, which is an authoritative review of all available evidence to date. They conclude:

On the basis of current evidence we suggest that a peak of conventional oil production before 2030 appears likely and there is a significant risk of a peak before 2020.

If we accept that there will be a peak in the production of oil within ten years, if it hasn’t already occurred, we need to return to David MacKay’s Five Energy Plans for Britain, and consider the alternatives. There are two significant variables that need to be taken into account when considering a transition from oil to other energy sources. The first is how long it will take to replace our current oil-based global energy infrastructure with something we think is a viable alternative.

In a 2005 report for the US Department of Energy, ((The ‘Hirsch Report’: Peaking of World Oil Production: Impacts, Mitigation and Risk Management (PDF). )) Robert Hirsch stated:

The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.

The second significant variable is the net energy that can be extracted from other sources of energy, such as nuclear, solar and wind.  (We should also note that oil is not just a source of fuel, but a composite in plastics, fertiliser, medicines, rubber, asphalt and other useful products. As a replacement for oil in products other than fuel, nuclear, wind, solar, etc. are not viable. Anyway, here were are discussing primary sources of energy).

Below is a diagram by Charles Hall of SUNY, (click to enlarge), which offers a view of the Energy Return on Investment (EROI) of various sources of energy. It is difficult to be very precise when calculating net energy, or what energy is left over after energy is invested in producing energy, but this is the most thorough analysis available and offers a rough index.

Energy Return on Energy Invested. (Click to enlarge) Source: Charles Hall (SUNY)
Energy Return on Energy Invested. (Click to enlarge) Source: Charles Hall (SUNY)

It shows two significant things that need to be highlighted when considering the transition from fossil fuels to renewables.  The first is that oil, coal and gas are more intensive forms of energy than other sources of raw energy. “A litre of oil packs 38MJ of chemical energy, as much energy as is expended by a person working two-weeks of 10-hour days.” ((Richard Heinberg, Searching for a Miracle, 2009, p. 32)) The second, is that the EROI of renewables, even nuclear, is less than that of oil, coal and gas. None are direct replacements for fossil fuels and, as David MacKay has shown, it is very difficult (‘absurd?’) to stack all viable renewables up together as a replacement for current UK consumption levels of energy. Remember, that no-one expects our consumption of energy to voluntarily decrease. Our emissions from fossil-fuels are expected to decrease, but somehow the expectation is that we will continue to use the same, if not more, amounts of energy as we do today.

The Post Carbon Institute recently published a report based on the work of Charles Hall, which offers a very readable introduction to EROI (they call it Energy Returned on Energy Invested (EROEI). A summary of the analysis of EROEI can be seen below.

Energy Returned on Energy Invested (EROEI). Source: Post Carbon Institute
Energy Returned on Energy Invested (EROEI). Source: Post Carbon Institute

The report concludes that substantial per-capita reductions in energy use is the only way we can look forward. “…the question the world faces is no longer whether to reduce energy consumption, but how.” ((Richard Heinberg, Searching for a Miracle, 2009, p. 65))

If this is the predicament we are in, how do we fruitfully manage the desire for economic growth, the time required to transition from a fossil-fuel-based infrastructure and the replacement of carbon-emitting oil, coal and gas with other forms of energy that provide a similar net value to our lives? The report offers several recommendations, including the need to move to a no-growth, steady-state economy, because as we have seen from the GDP chart above, energy and economic activity are closely tied.

It is true that improvements in efficiency, the introduction of new technologies, and the shifting of emphasis from basic production to provision of services can enable some economic growth to occur in specific sectors without an increase in energy consumption. But such trends have inherent bounds. Over the long run, static or falling energy supplies must be reflected in economic stasis or contraction. ((ibid, p. 67))

It is pointless me re-iterating the full conclusion of the report, but I should note that there are other reports that offer similar conclusions. ((For example, see Prosperity Without Growth – The Transition to a Sustainable Economy from the Sustainable Development Commission, ‘The Government’s independent watchdog on sustainable development’ & Nine Meals from Anarchy from the New Economics Foundation))

A Resilient Education

Richard mentions the Resilient Nation pamphlet from Demos. In it, the author recognises how education already plays a part in teaching people how to be resilient in the face of threats such as fire and first-aid, but highlights the need for society to become more resilient to other threats such as natural disaster and the impact of energy shortages. Documents like this provide a useful contribution for us to begin to think about resilience and how it affects both the operation of our institutions and the development of a more relevant curriculum in a world facing impacts from climate change, peak oil and zero-growth or even a ‘planned recession‘. We need to consider our use of and the benefits of technology both as a way of running resilient institutions and as effective tools for teaching about resilience. For example, is the promotion of cloud computing and ubiquitous internet access increasing our resilience or not?

The Transition Town movement is increasingly being seen as a way to think and learn about ‘resilience’. The reports mentioned from NEF, PCI and SDC all refer positively to the Transition Town movement. It borrows the term from the ecological sciences, so there is a history of the term ‘resilience’ which educators can draw on when considering how it might be usefully employed both operationally, in terms of institutional continuity (whatever form that takes), and in the delivery of a relevant curriculum which produces graduates who are both prepared for the future impacts of climate change and peak oil and eager to work to address the challenges. There are a growing number of Transition groups meeting across the country and people working in universities, like myself, are members attempting to work with local government to create more resilient communities.

The purpose of this post, however, was to provide an overview of energy and oil as a reference for moving on to think more about a ‘resilient education’. My interests are in the institutional and organisational effects this might have, particularly relating to our dependence on technology to operate Higher Education Institutions and deliver teaching and research. Another important area to consider is how to develop resilient citizens, as Richard has begun to do. Since its discovery, oil has changed the way we live. It has changed the fabric of society, the institutions we have created, our expectations of the future and our ambitions for ourselves. As the availability of oil changes, so will our institutions and our communities. My interest is the impact to and role of education within this environment of change. My specific interest is the role and value of technology (in whatever forms) to teach and learn in this environment of change.